Lecture 35

More NP-complete Problems
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NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— \— \——
A(x) B(x) B(A(x))
<, L <, L

Observation: If L is NP-hard and L <, L', then L’ is also NP-hard.
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Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

¢ — (I/tl\/uz\/Vuk)
¢/ — (ulvuz...vuk/zvu) N (I/tk/2+1\/uk/2_|_2...\/ukv _'l/l)

Time to break a clause of k literals into a 3CNF formula:

_ Prove that T(k) = O(k°)
o T(k)=2.T(k/I2+ 1)+ Ok

(k) ( ) (k) /and reduction is polytime.
o 7T(3)=c
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(U Vi,V uy)

T

(I/ll V I/iz V u) (MB V _'l/t)

Further breakdown isn’t possible.
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¢ — (G, k):
® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

® An edge between every pair of vertices in the same cluster.

® An edge between two vertices of different clusters, if they correspond to inconsistent

partial assignments.

® k= # of clauses in ¢.

Claim: ¢ is satisfiable iff G has an independent set of size k = # of clauses in ¢

Proof: ( = ) Suppose ¢ has a satistying assignment 1.
Form an independent set S of size k for G:

By picking a vertex from every cluster whose values matches to that of u.



