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(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

     ϕ =

                                                       ϕ′￼ = ∧

Time to break a clause of  literals into a 3CNF formula:k

• T(k) =

• T(3) = c
2.T(k/2 + 1) + O(k)

two clauses of almost  many literalsk/2

Prove that 

and reduction is polytime. 

T(k) = O(kc)

 such that the satisfiability is preserved.
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Further breakdown isn’t possible.
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