

Lecture 35

More NP-complete Problems

NP-Completeness and NP-Hardness

NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

$$\underbrace{}_{A(x)}$$

NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

$$\underbrace{\quad}_{A(x)} \quad \underbrace{\quad}_{B(x)}$$

NP-Completeness and NP-Hardness

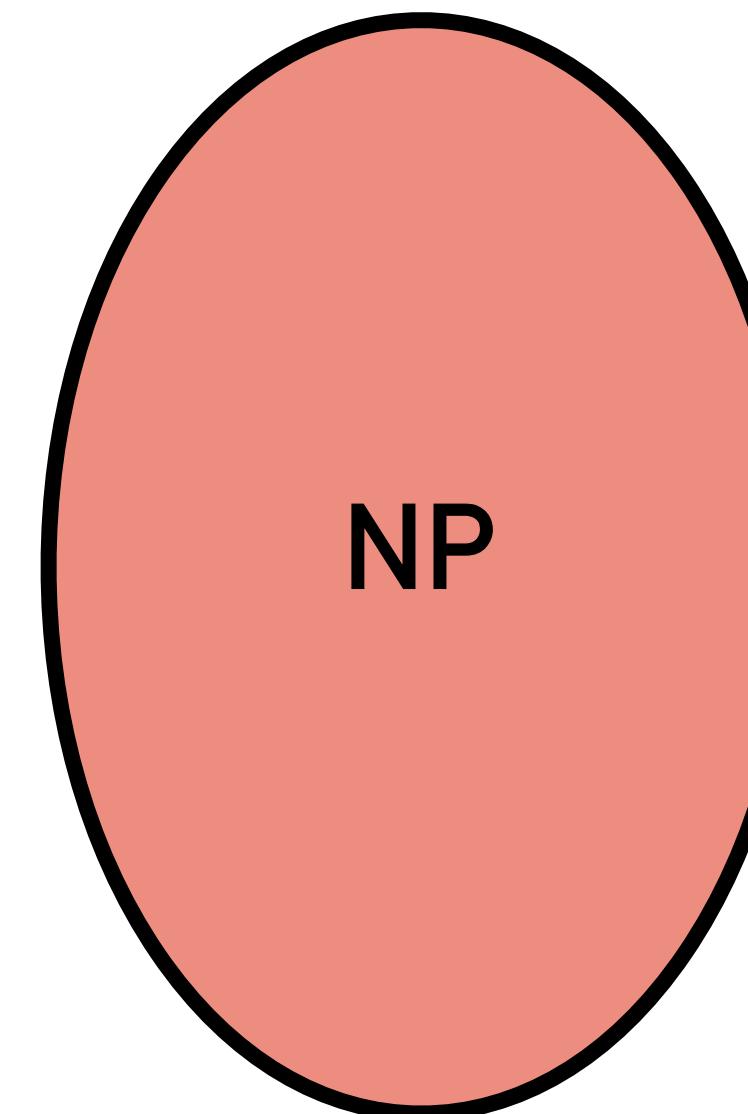
Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

$$\underbrace{A(x)}_{L_1 \leq_p L_2} \quad \underbrace{B(x)}_{L_2 \leq_p L_3} \quad \underbrace{B(A(x))}_{L_1 \leq_p L_3}$$

NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

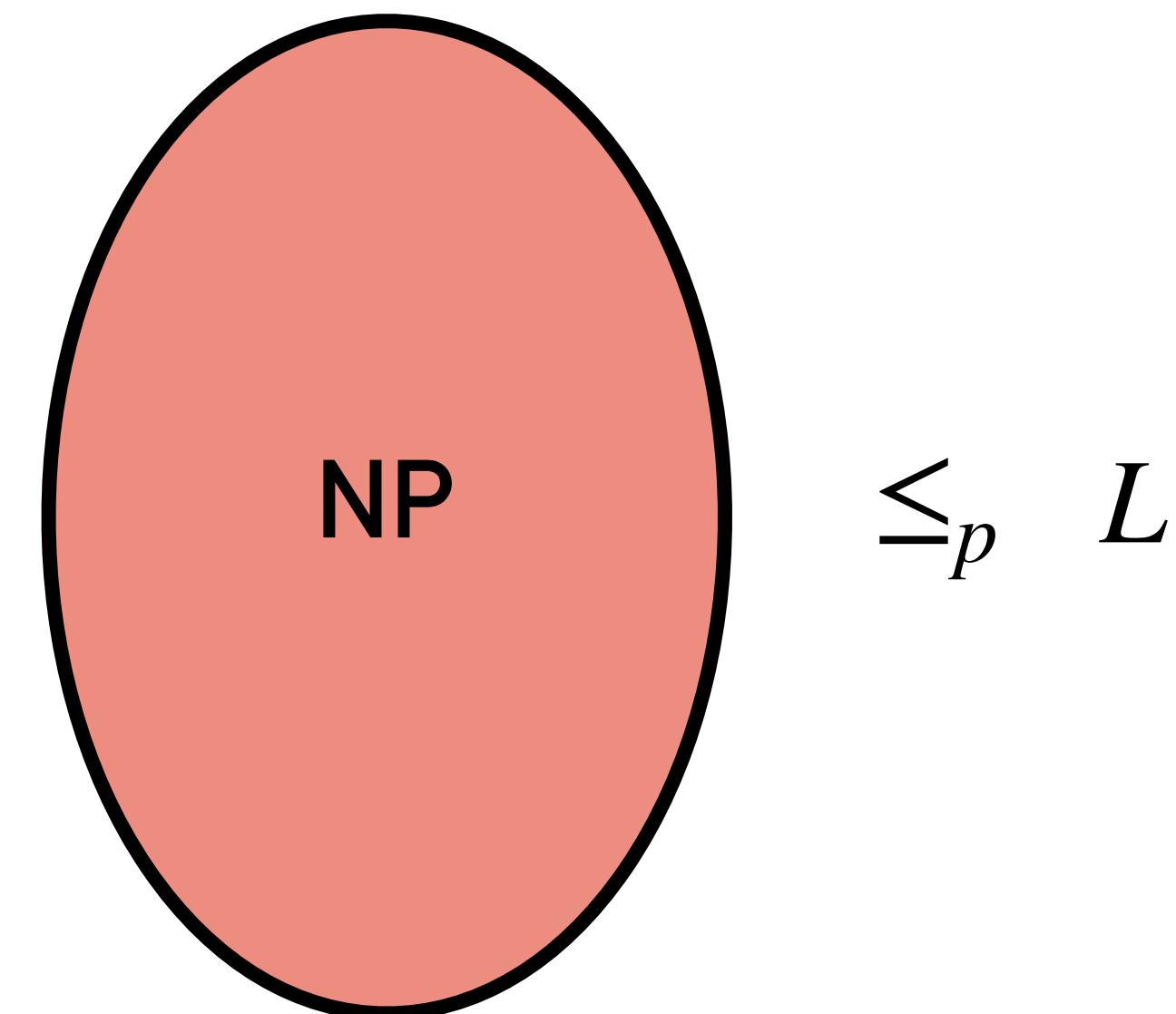
$$\underbrace{A(x)}_{L_1 \leq_p L_2} \quad \underbrace{B(x)}_{L_2 \leq_p L_3} \quad \underbrace{B(A(x))}_{L_1 \leq_p L_3}$$



NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

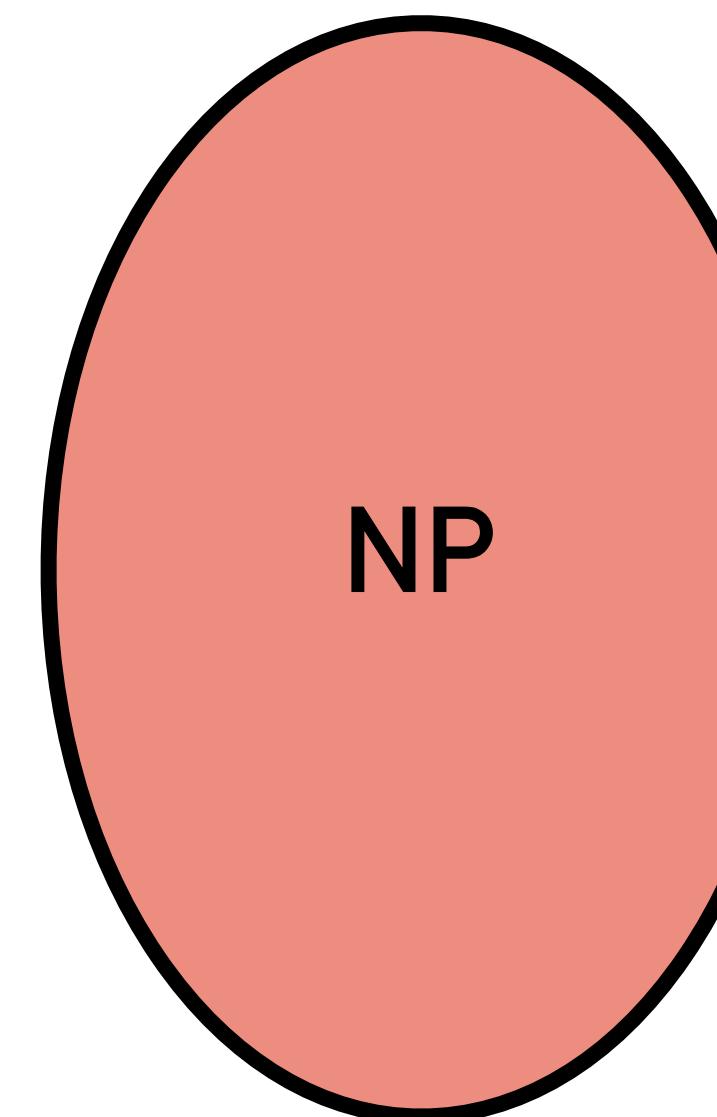
$$\underbrace{A(x)}_{L_1 \leq_p L_2} \quad \underbrace{B(x)}_{L_2 \leq_p L_3} \quad \underbrace{B(A(x))}_{L_1 \leq_p L_3}$$



NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

$$\underbrace{A(x)}_{L_1 \leq_p L_2} \quad \underbrace{B(x)}_{L_2 \leq_p L_3} \quad \underbrace{B(A(x))}_{L_1 \leq_p L_3}$$

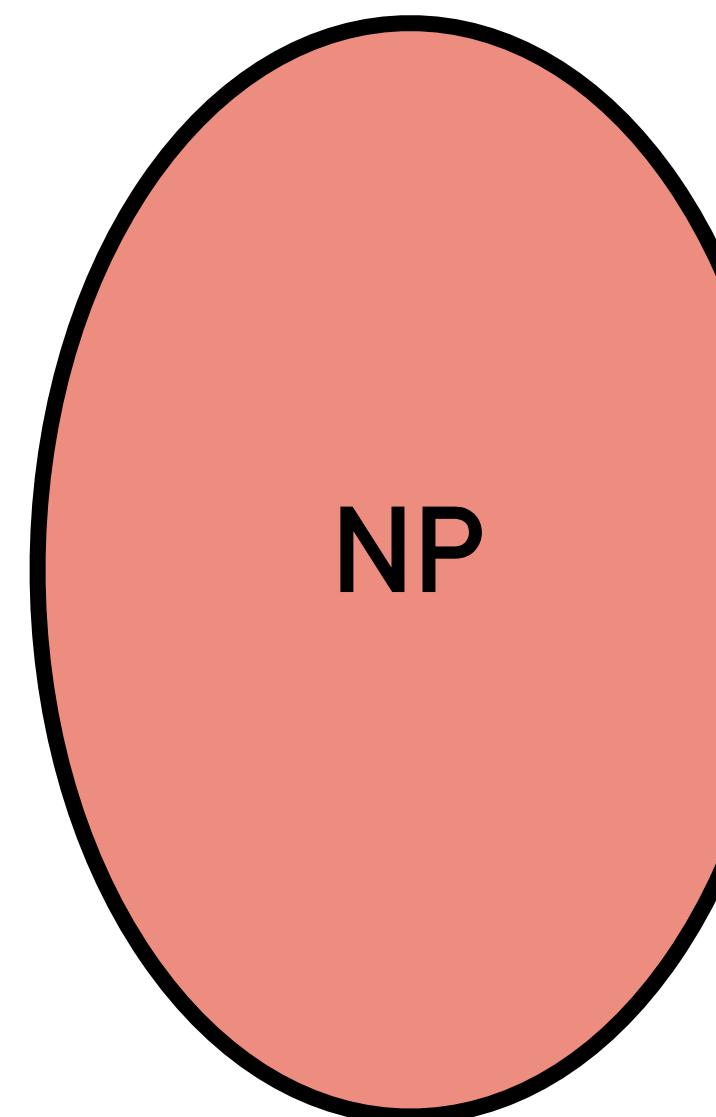


$$\leq_p \quad L \quad \leq_p \quad L'$$

NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

$$\underbrace{A(x)}_{L_1 \leq_p L_2} \quad \underbrace{B(x)}_{L_2 \leq_p L_3} \quad \underbrace{B(A(x))}_{L_1 \leq_p L_3}$$



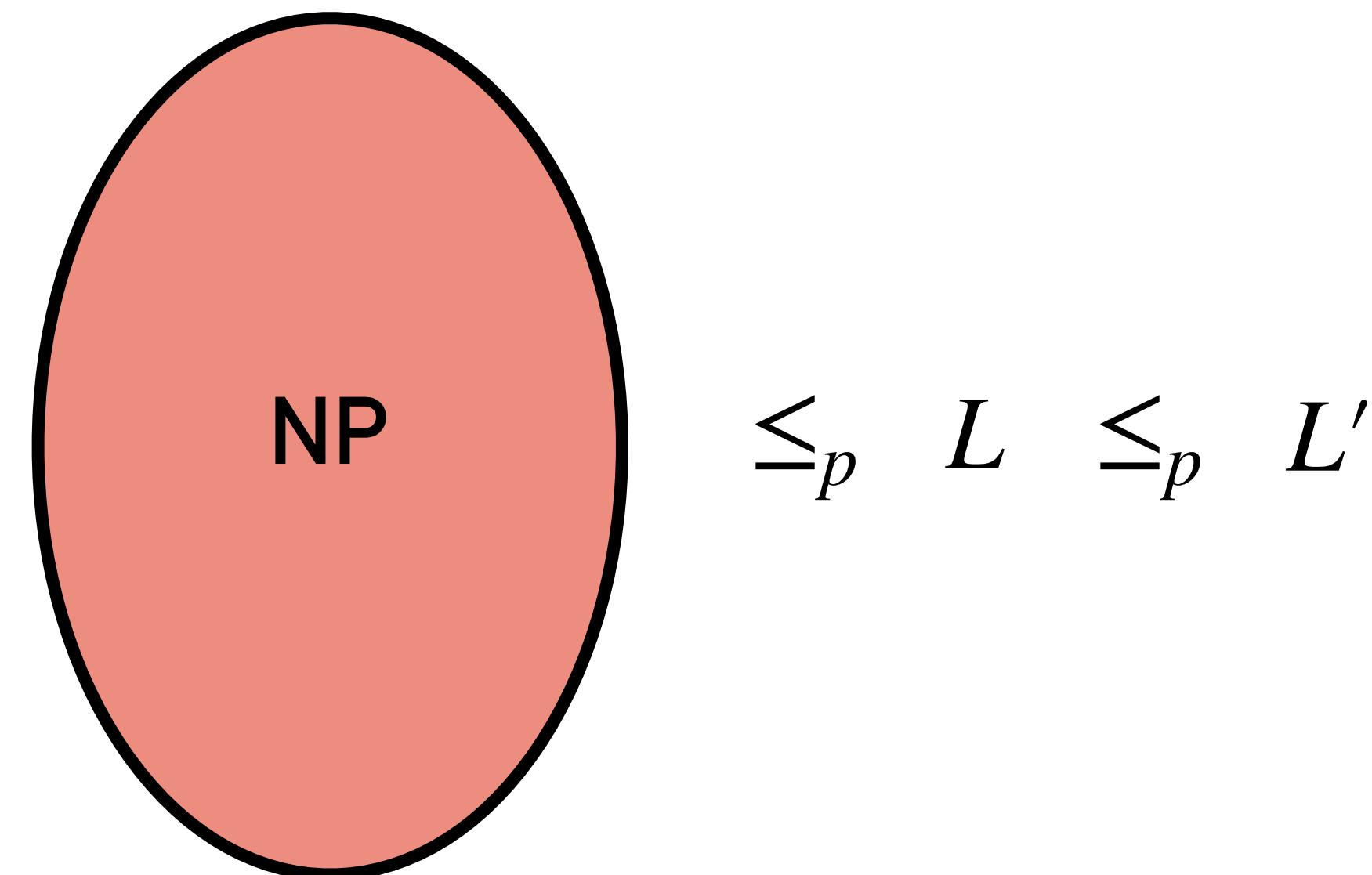
$$\leq_p \quad L \quad \leq_p \quad L'$$

Observation: If L is NP-hard and $L \leq_p L'$,

NP-Completeness and NP-Hardness

Transitivity in Reduction: If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

$$\underbrace{A(x)}_{L_1 \leq_p L_2} \quad \underbrace{B(x)}_{L_2 \leq_p L_3} \quad \underbrace{B(A(x))}_{L_1 \leq_p L_3}$$



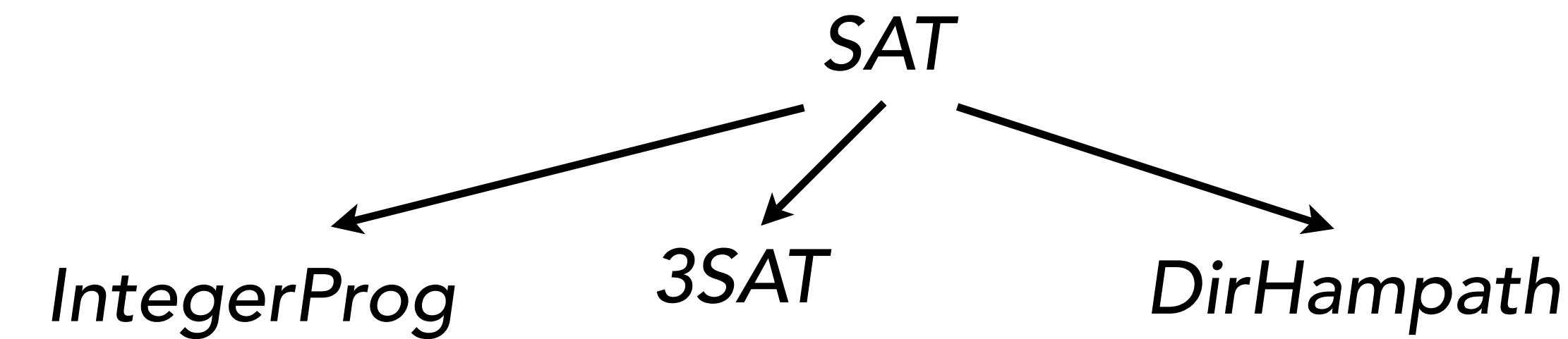
Observation: If L is NP-hard and $L \leq_p L'$, then L' is also NP-hard.

NP-complete Network

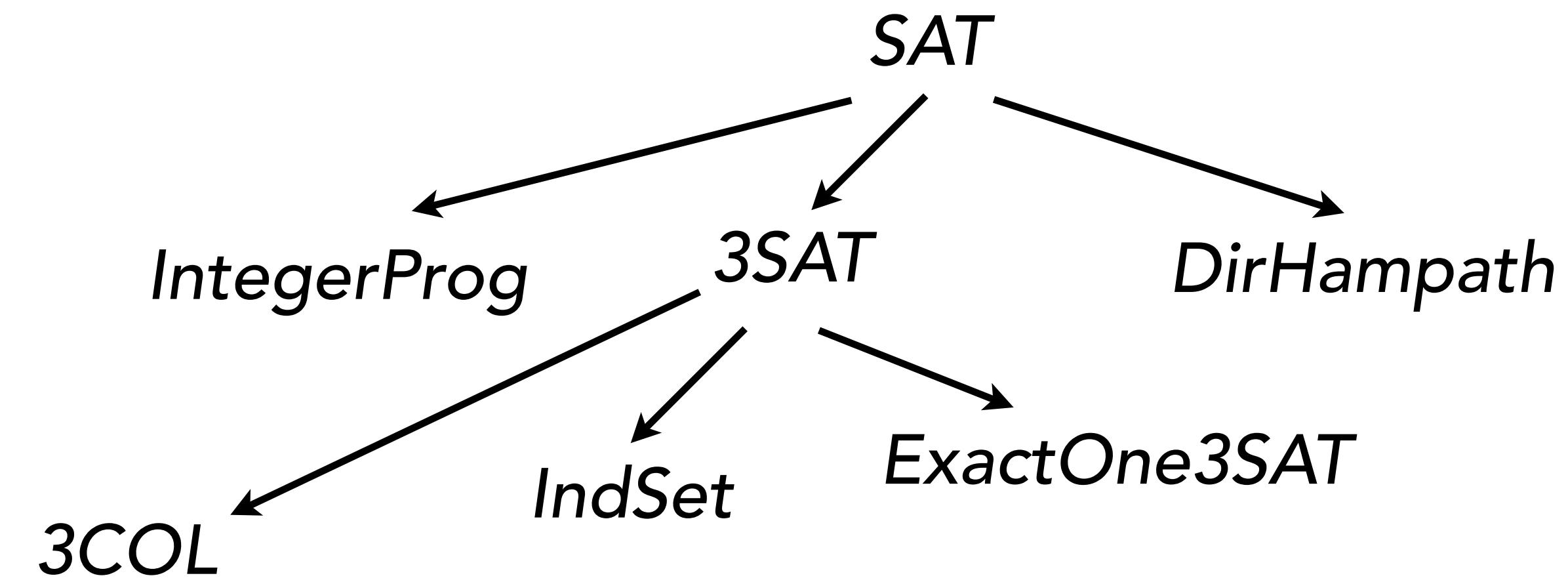
NP-complete Network

SAT

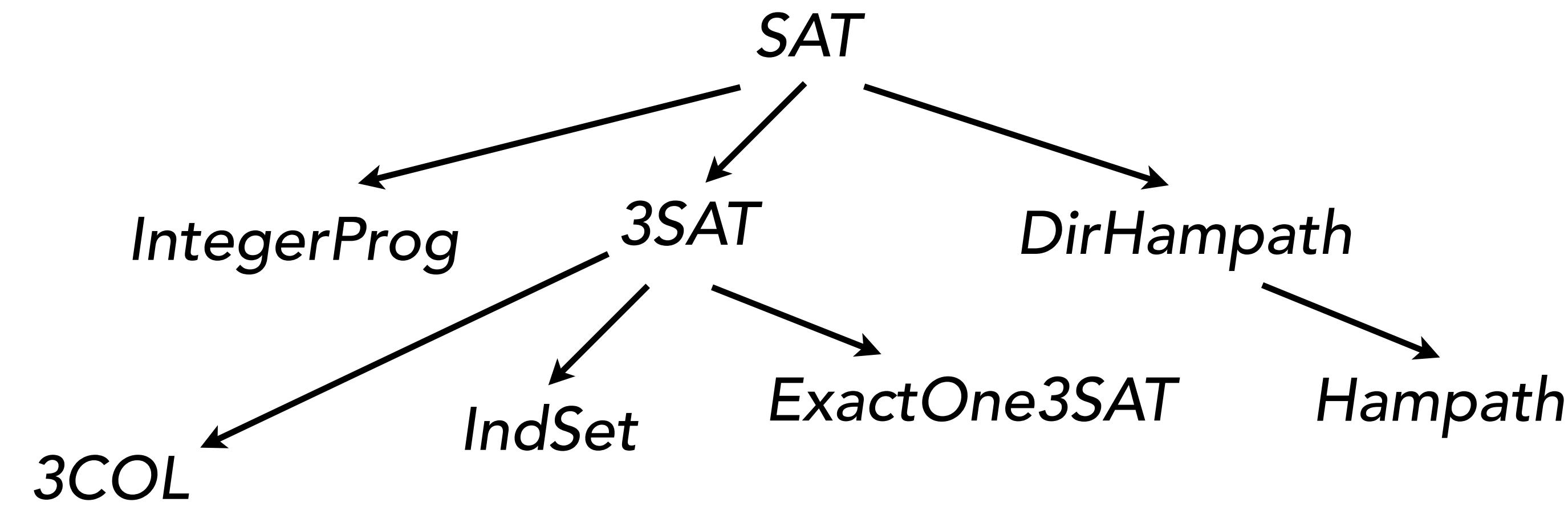
NP-complete Network



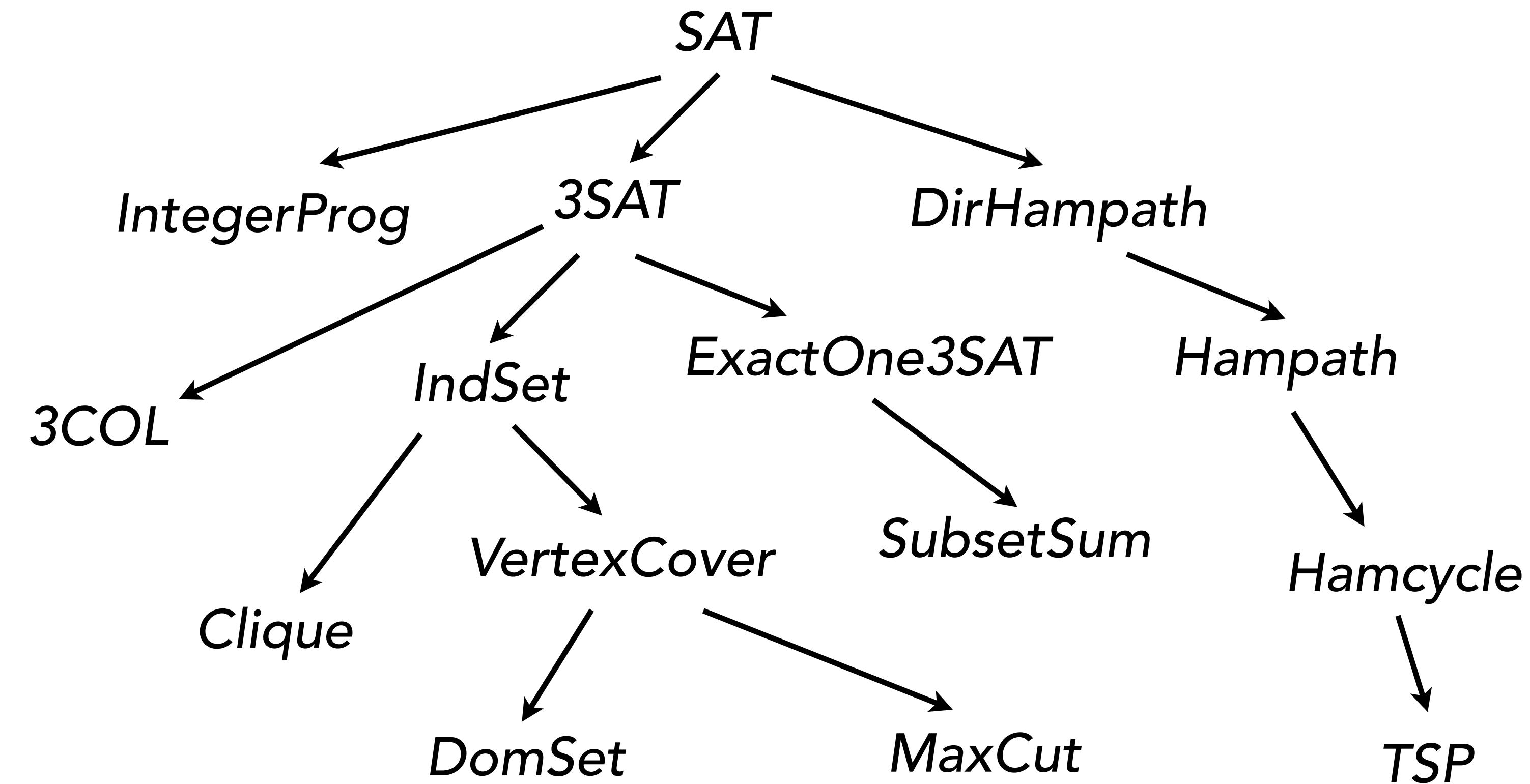
NP-complete Network



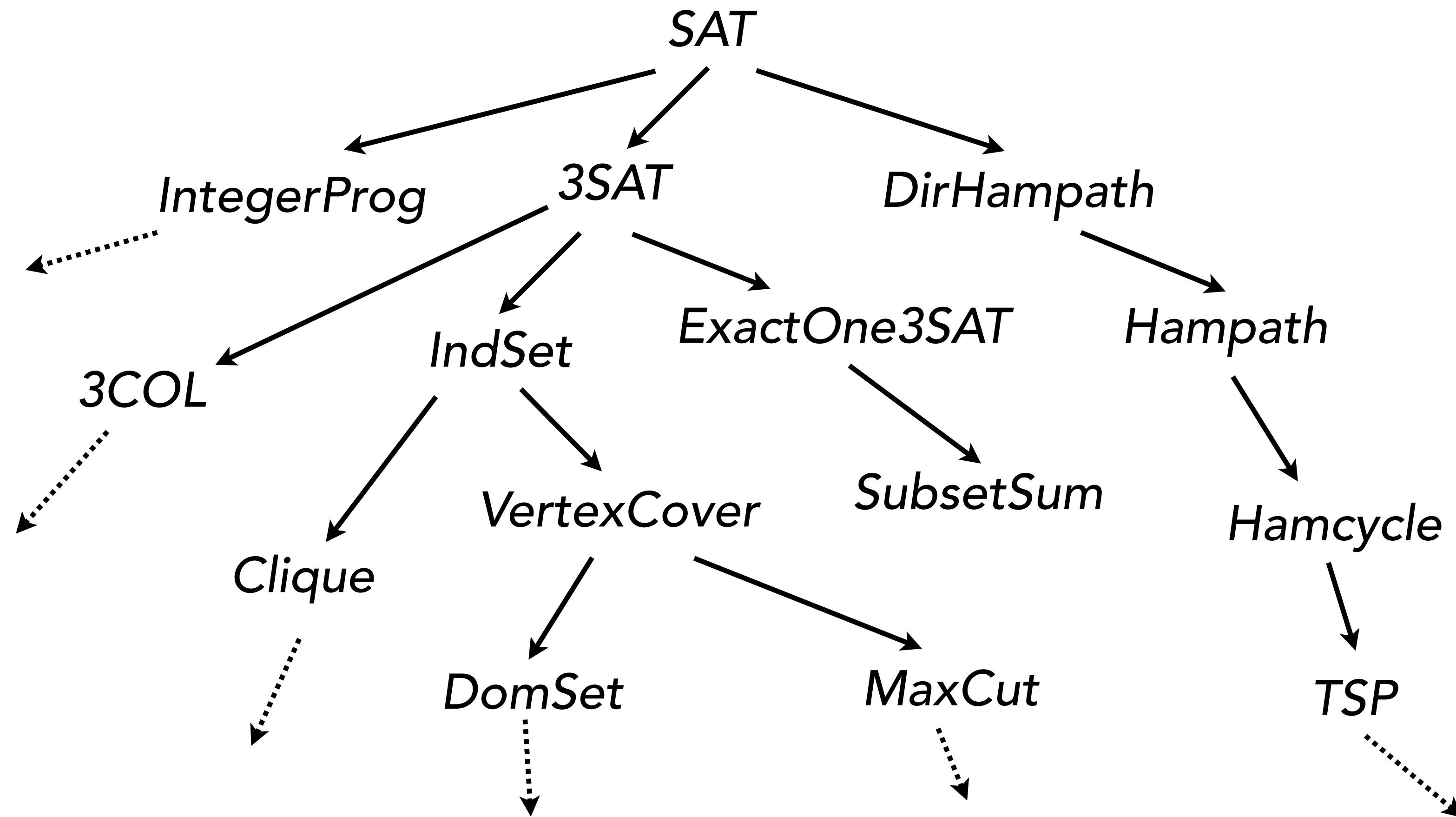
NP-complete Network



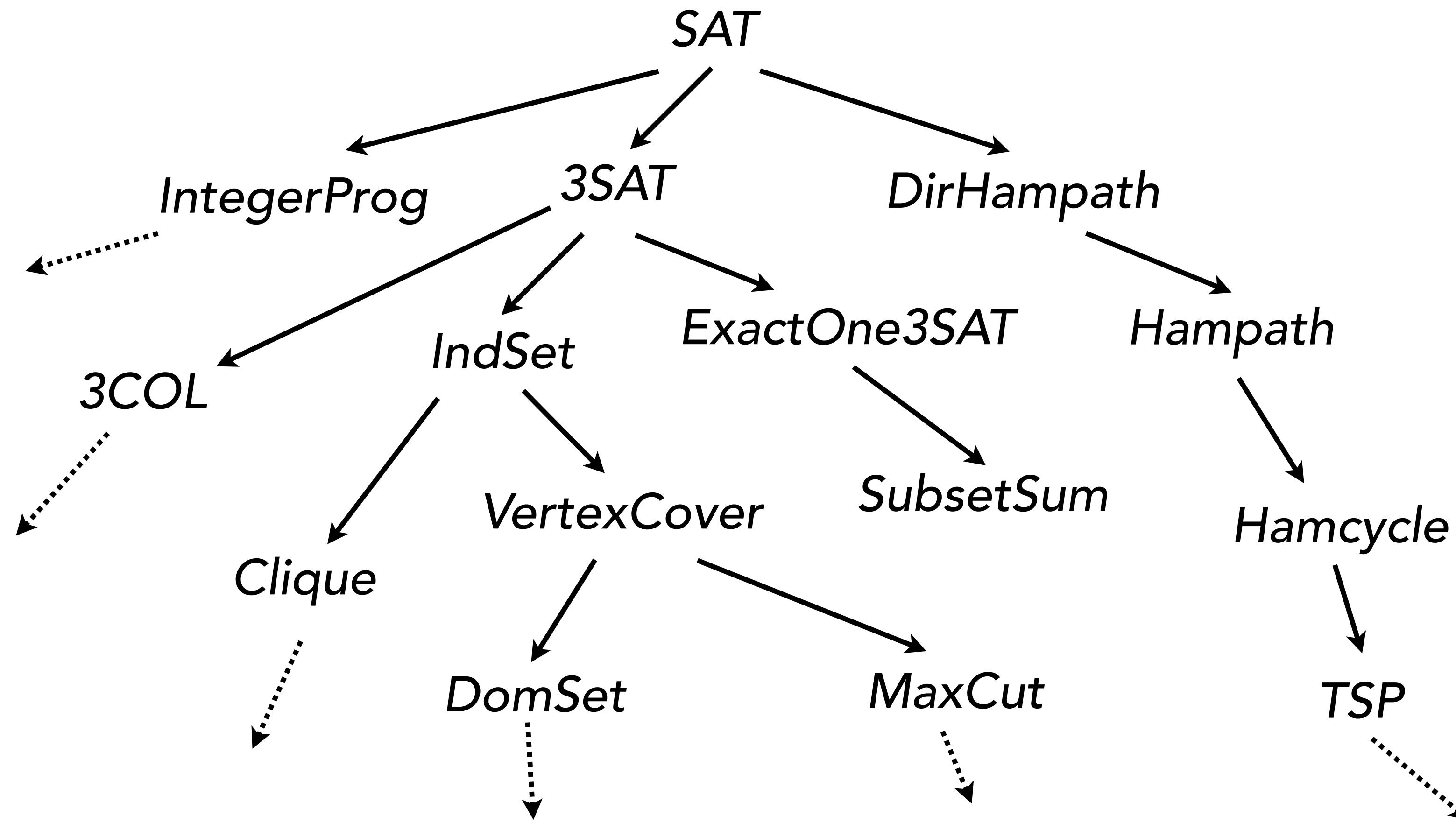
NP-complete Network



NP-complete Network

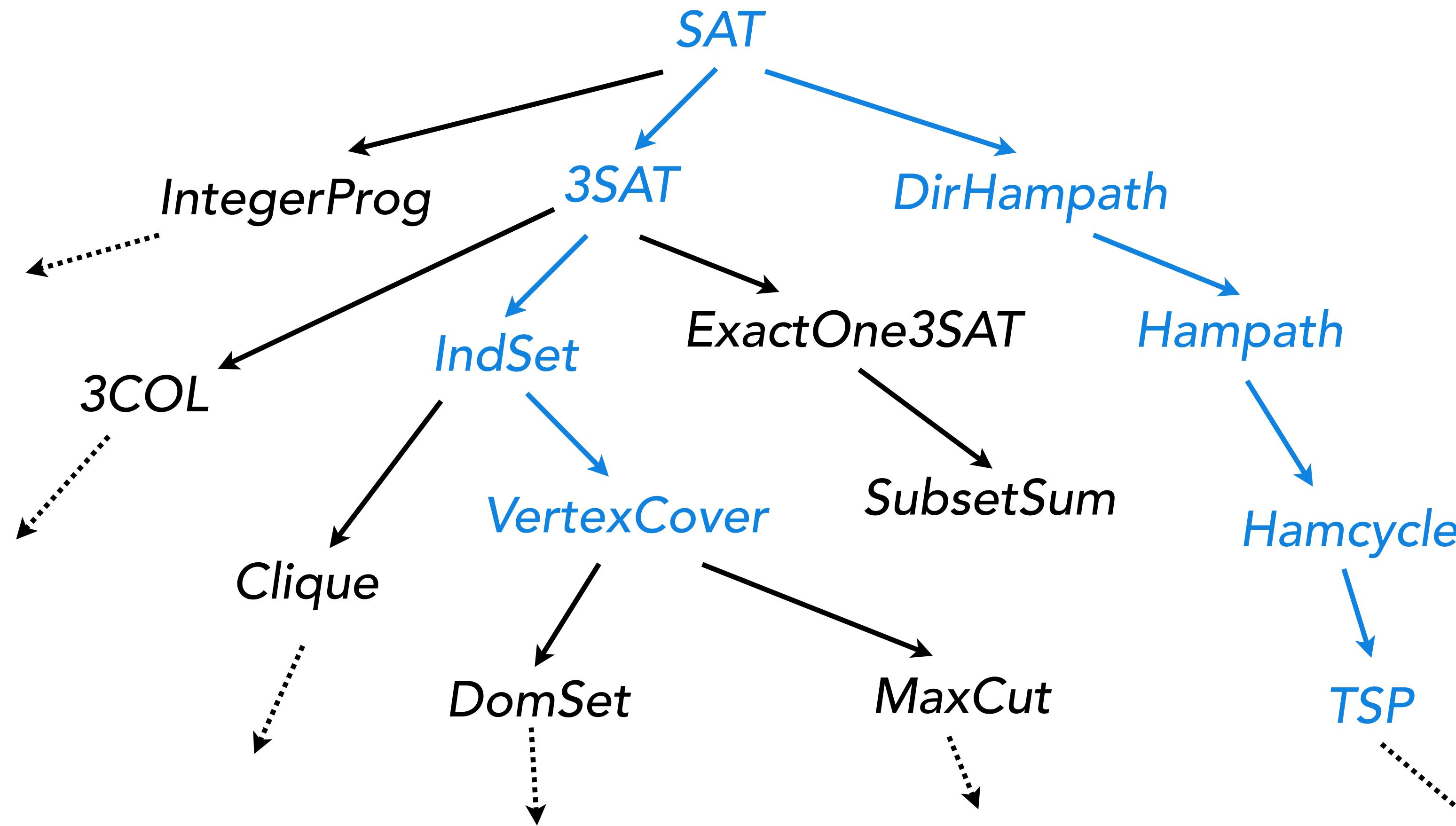


NP-complete Network



“In this paper we give theorems that suggest, but do not imply, that these problems, as well as many others, will remain intractable perpetually.” – Richard Karp, 1972

NP-complete Network



“In this paper we give theorems that suggest, but do not imply, that these problems, as well as many others, will remain intractable perpetually.” – Richard Karp, 1972

$$\mathsf{SAT} \leq_p \mathsf{3SAT}$$

$$SAT \leq_p 3SAT$$

Idea:

$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into

$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals

$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$SAT \leq_p 3SAT$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$\phi =$

$SAT \leq_p 3SAT$

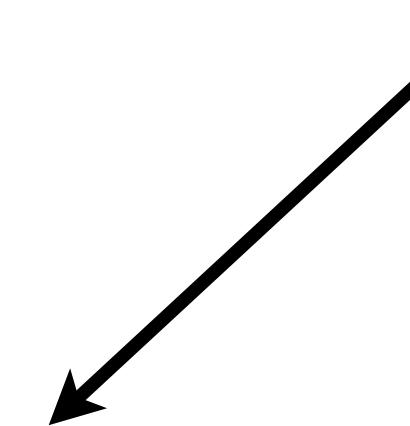
Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\phi = (u_1 \vee u_2 \vee \dots \vee u_k)$$

$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

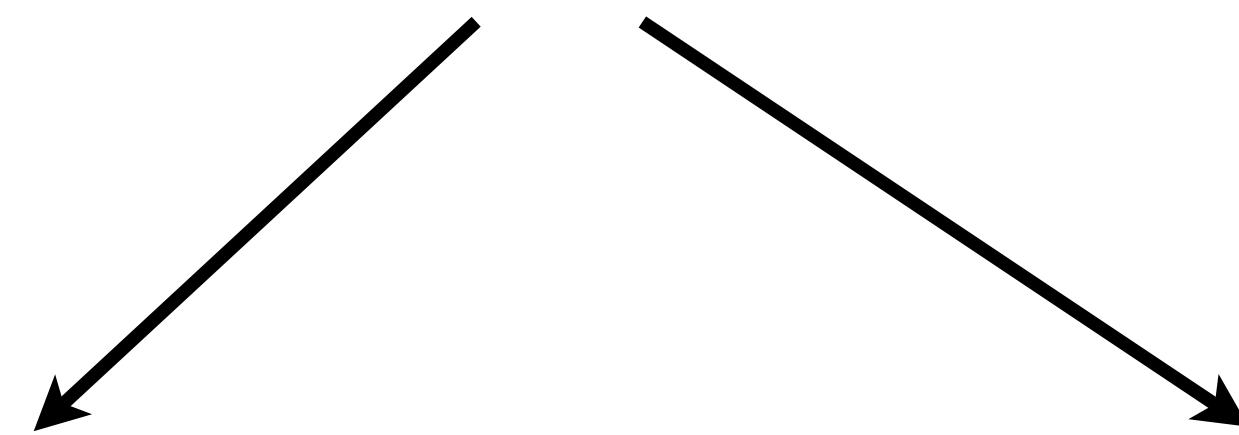
$$\phi = (u_1 \vee u_2 \vee \dots \vee u_k)$$



$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

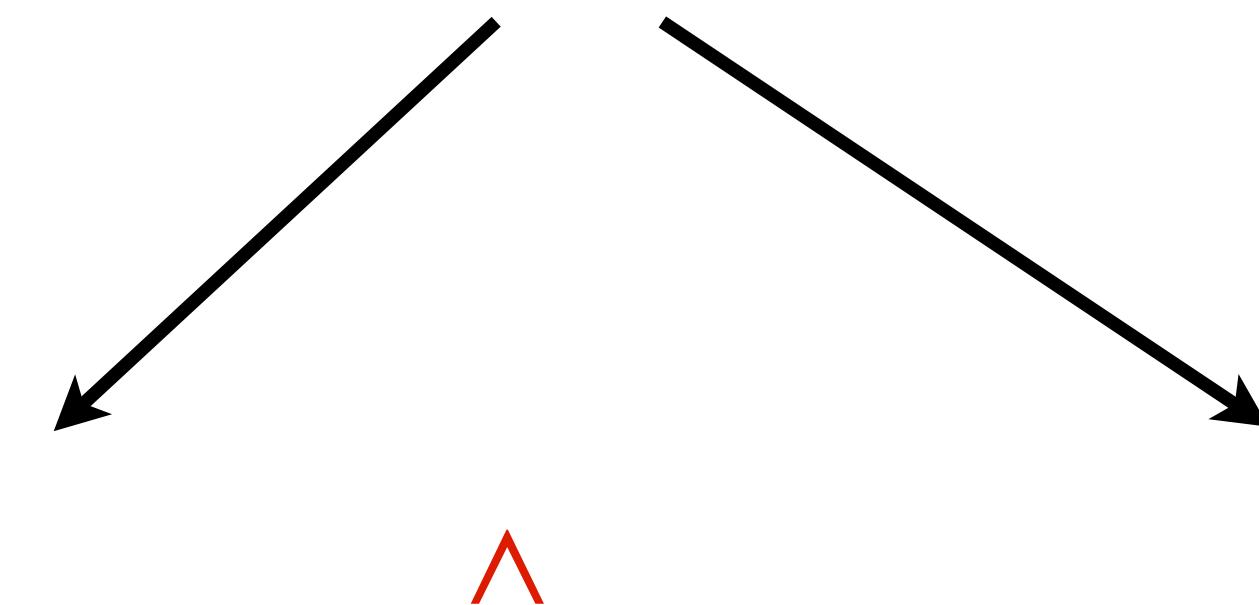
$$\phi = (u_1 \vee u_2 \vee \dots \vee u_k)$$



$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\phi = (u_1 \vee u_2 \vee \dots \vee u_k)$$



$$\phi' =$$

$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\begin{aligned}\phi &= (u_1 \vee u_2 \vee \dots \vee u_k) \\ &\quad \searrow \quad \swarrow \\ \phi' &= (u_1 \vee u_2 \dots \vee u_{k/2} \vee \textcolor{blue}{u}) \quad \wedge\end{aligned}$$

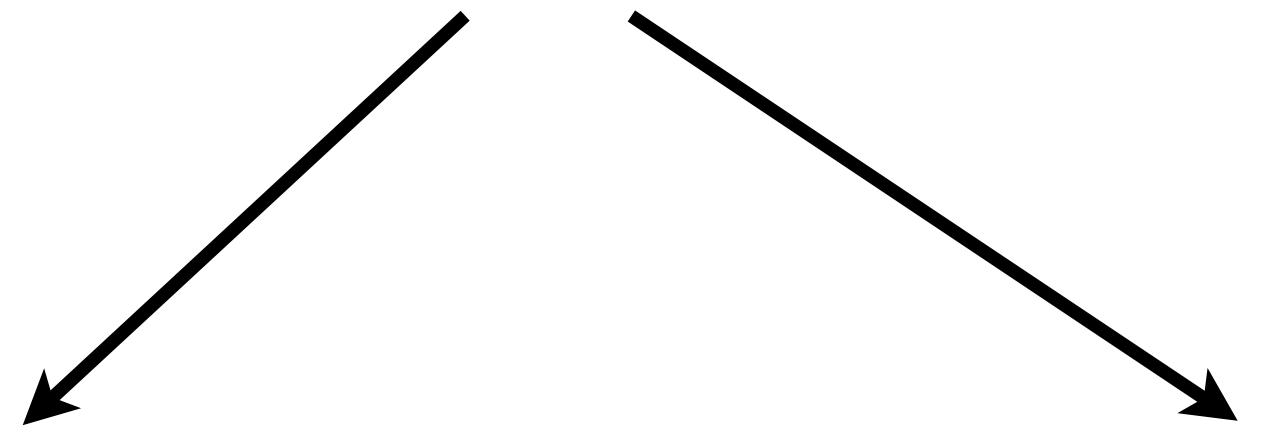
$$SAT \leq_p 3SAT$$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\begin{aligned} \phi &= (u_1 \vee u_2 \vee \dots \vee u_k) \\ &\quad \searrow \qquad \swarrow \\ \phi' &= (u_1 \vee u_2 \dots \vee u_{k/2} \vee \textcolor{blue}{u}) \quad \wedge \quad (u_{k/2+1} \vee u_{k/2+2} \dots \vee u_k \vee \neg \textcolor{blue}{u}) \end{aligned}$$

$SAT \leq_p 3SAT$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\phi = (u_1 \vee u_2 \vee \dots \vee u_k)$$

$$\phi' = (u_1 \vee u_2 \dots \vee u_{k/2} \vee u) \quad \wedge \quad (u_{k/2+1} \vee u_{k/2+2} \dots \vee u_k \vee \neg u)$$
$$\phi'' = (u_{k/2+1} \vee u_{k/2+2} \dots \vee u_k \vee \neg u)$$

Time to break a clause of k literals into a 3CNF formula:

$SAT \leq_p 3SAT$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\begin{aligned}\phi &= (u_1 \vee u_2 \vee \dots \vee u_k) \\ &\quad \searrow \qquad \swarrow \\ \phi' &= (u_1 \vee u_2 \dots \vee u_{k/2} \vee \textcolor{blue}{u}) \quad \wedge \quad (u_{k/2+1} \vee u_{k/2+2} \dots \vee u_k \vee \neg \textcolor{blue}{u})\end{aligned}$$

Time to break a clause of k literals into a 3CNF formula:

- $T(k) =$

$SAT \leq_p 3SAT$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\begin{aligned}\phi &= (u_1 \vee u_2 \vee \dots \vee u_k) \\ &\quad \searrow \qquad \swarrow \\ \phi' &= (u_1 \vee u_2 \dots \vee u_{k/2} \vee \textcolor{blue}{u}) \quad \wedge \quad (u_{k/2+1} \vee u_{k/2+2} \dots \vee u_k \vee \neg \textcolor{blue}{u})\end{aligned}$$

Time to break a clause of k literals into a 3CNF formula:

- $T(k) =$
- $T(3) = c$

$SAT \leq_p 3SAT$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\begin{aligned}\phi &= (u_1 \vee u_2 \vee \dots \vee u_k) \\ &\quad \searrow \qquad \swarrow \\ \phi' &= (u_1 \vee u_2 \dots \vee u_{k/2} \vee \textcolor{blue}{u}) \quad \wedge \quad (u_{k/2+1} \vee u_{k/2+2} \dots \vee u_k \vee \neg \textcolor{blue}{u})\end{aligned}$$

Time to break a clause of k literals into a 3CNF formula:

- $T(k) = 2 \cdot T(k/2 + 1) + O(k)$
- $T(3) = c$

$SAT \leq_p 3SAT$

Idea: Reduce SAT to $3SAT$ by repeatedly breaking down clauses of $k > 3$ literals into two clauses of almost $k/2$ many literals such that the satisfiability is preserved.

$$\begin{aligned}\phi &= (u_1 \vee u_2 \vee \dots \vee u_k) \\ &\quad \searrow \qquad \swarrow \\ \phi' &= (u_1 \vee u_2 \dots \vee u_{k/2} \vee u) \quad \wedge \quad (u_{k/2+1} \vee u_{k/2+2} \dots \vee u_k \vee \neg u)\end{aligned}$$

Time to break a clause of k literals into a 3CNF formula:

- $T(k) = 2.T(k/2 + 1) + O(k)$
- $T(3) = c$

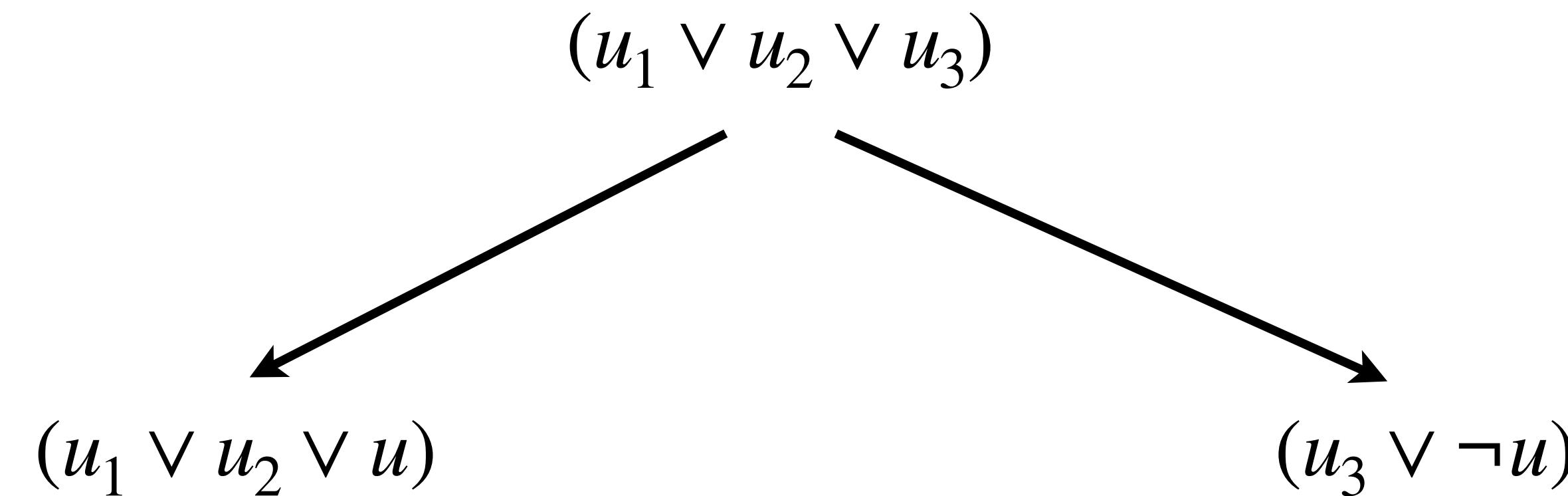
$\left. \begin{array}{c} \\ \\ \end{array} \right\}$ *Prove that $T(k) = O(k^c)$ and reduction is polytime.*

Isn't 2SAT also NP-Complete?

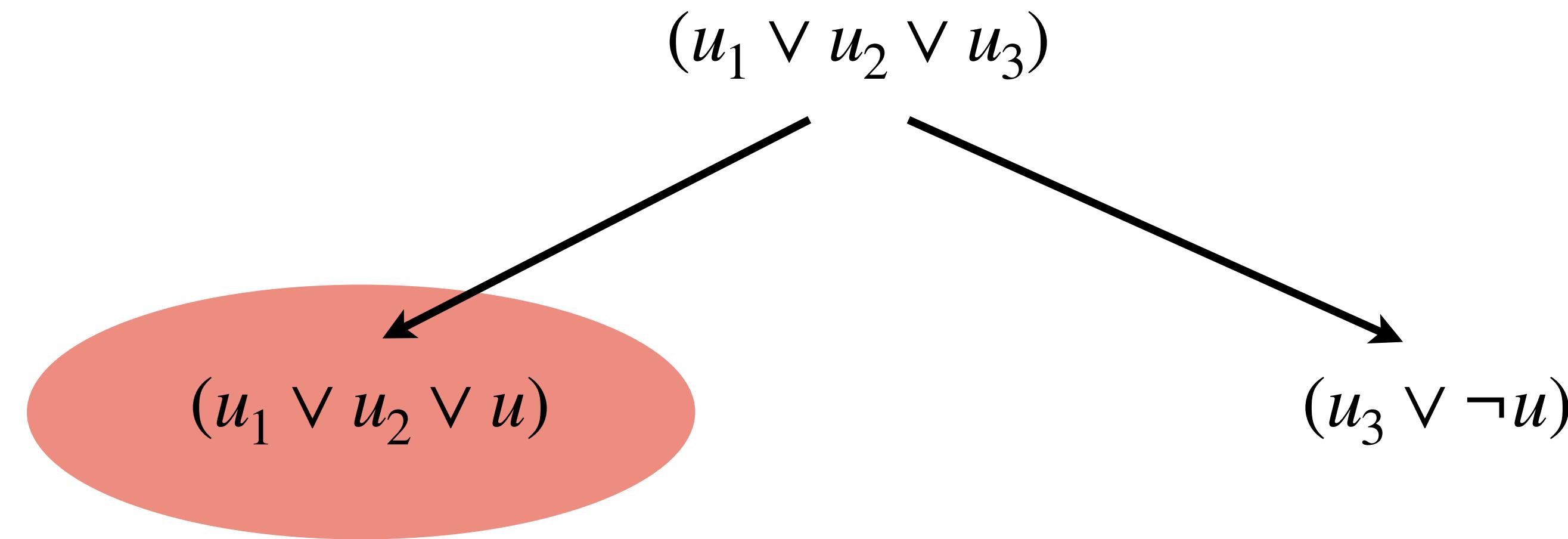
Isn't 2SAT also NP-Complete?

$$(u_1 \vee u_2 \vee u_3)$$

Isn't 2SAT also NP-Complete?



Isn't 2SAT also NP-Complete?



Further breakdown isn't possible.

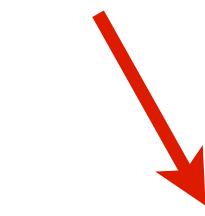
$$3SAT \leq_p \text{IndSet}$$

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

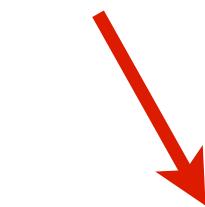
$$3SAT \leq_p \text{IndSet}$$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $\text{IndSet} = \{\langle G, k \rangle \mid G \text{ has an } \underline{\text{independent set of size } k}\}$



$$3SAT \leq_p \text{IndSet}$$

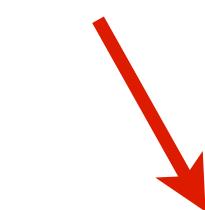
- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $\text{IndSet} = \{\langle G, k \rangle \mid G \text{ has an } \underline{\text{independent set of size } k}\}$



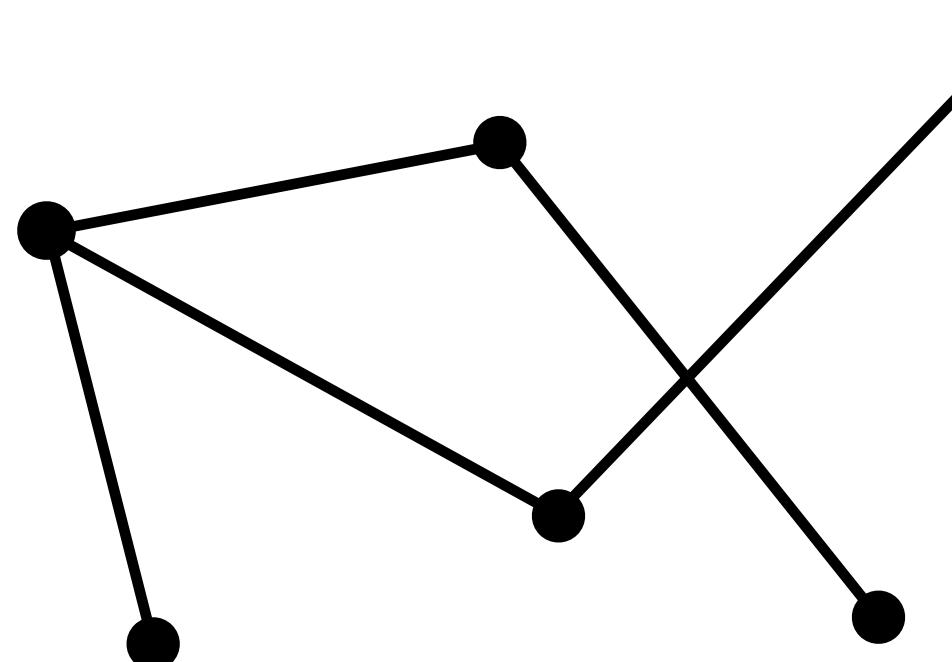
A subset of vertices of G , such that no two of its vertices are adjacent

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an } \underline{\text{independent set of size } k}\}$

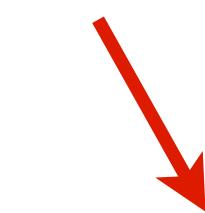


A subset of vertices of G , such that no two of its vertices are adjacent

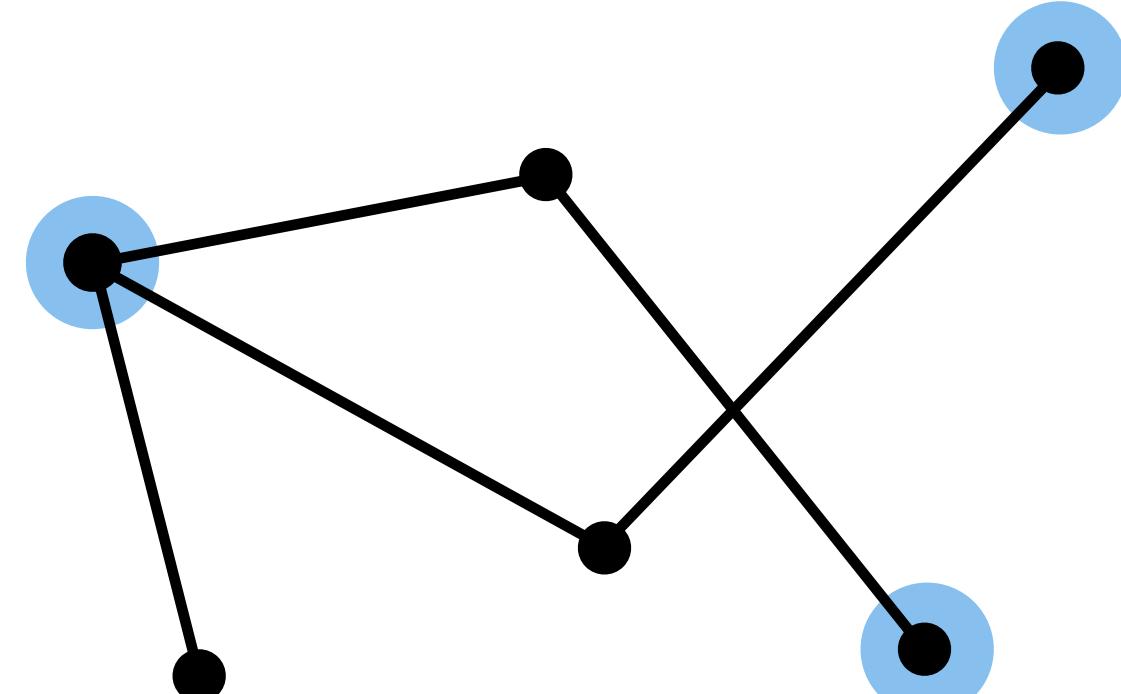


$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an } \underline{\text{independent set of size } k}\}$



A subset of vertices of G , such that no two of its vertices are adjacent



Has an independent set of size 3.

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .

$$(u_1 \vee u_2 \vee u_3) \implies$$

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .

$v_1: 0\ 0\ 1$

$v_2: 0\ 1\ 0$

$v_3: 0\ 1\ 1$

$(u_1 \vee u_2 \vee u_3) \implies v_4: 1\ 0\ 0$

$v_5: 1\ 0\ 1$

$v_6: 1\ 1\ 0$

$v_7: 1\ 1\ 1$

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .

$v_1: 0\ 0\ 1$

$v_2: 0\ 1\ 0$

$v_3: 0\ 1\ 1$

$(u_1 \vee u_2 \vee u_3) \implies v_4: 1\ 0\ 0$ $(u_1 \vee \bar{u}_3 \vee u_4) \implies$

$v_5: 1\ 0\ 1$

$v_6: 1\ 1\ 0$

$v_7: 1\ 1\ 1$

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .

$v_1: 0\ 0\ 1$		$v_8: 0\ 0\ 0$
$v_2: 0\ 1\ 0$		$v_9: 0\ 0\ 1$
$v_3: 0\ 1\ 1$		$v_{10}: 0\ 1\ 1$
$(u_1 \vee u_2 \vee u_3) \implies v_4: 1\ 0\ 0$	$(u_1 \vee \bar{u}_3 \vee u_4) \implies v_{11}: 1\ 0\ 0$	
$v_5: 1\ 0\ 1$		$v_{12}: 1\ 0\ 1$
$v_6: 1\ 1\ 0$		$v_{13}: 1\ 1\ 0$
$v_7: 1\ 1\ 1$		$v_{14}: 1\ 1\ 1$

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

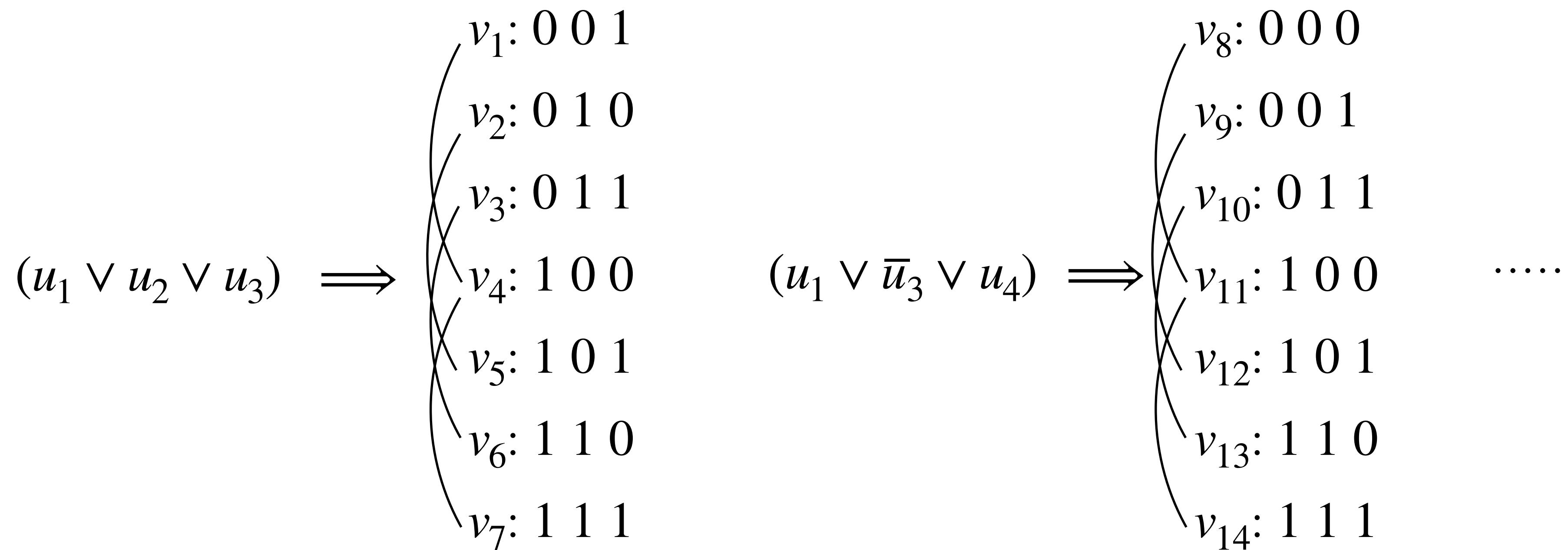
Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .

$v_1: 0\ 0\ 1$		$v_8: 0\ 0\ 0$	
$v_2: 0\ 1\ 0$		$v_9: 0\ 0\ 1$	
$v_3: 0\ 1\ 1$		$v_{10}: 0\ 1\ 1$	
$(u_1 \vee u_2 \vee u_3) \implies v_4: 1\ 0\ 0$	$(u_1 \vee \bar{u}_3 \vee u_4) \implies v_{11}: 1\ 0\ 0$	
$v_5: 1\ 0\ 1$		$v_{12}: 1\ 0\ 1$	
$v_6: 1\ 1\ 0$		$v_{13}: 1\ 1\ 0$	
$v_7: 1\ 1\ 1$		$v_{14}: 1\ 1\ 1$	

$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

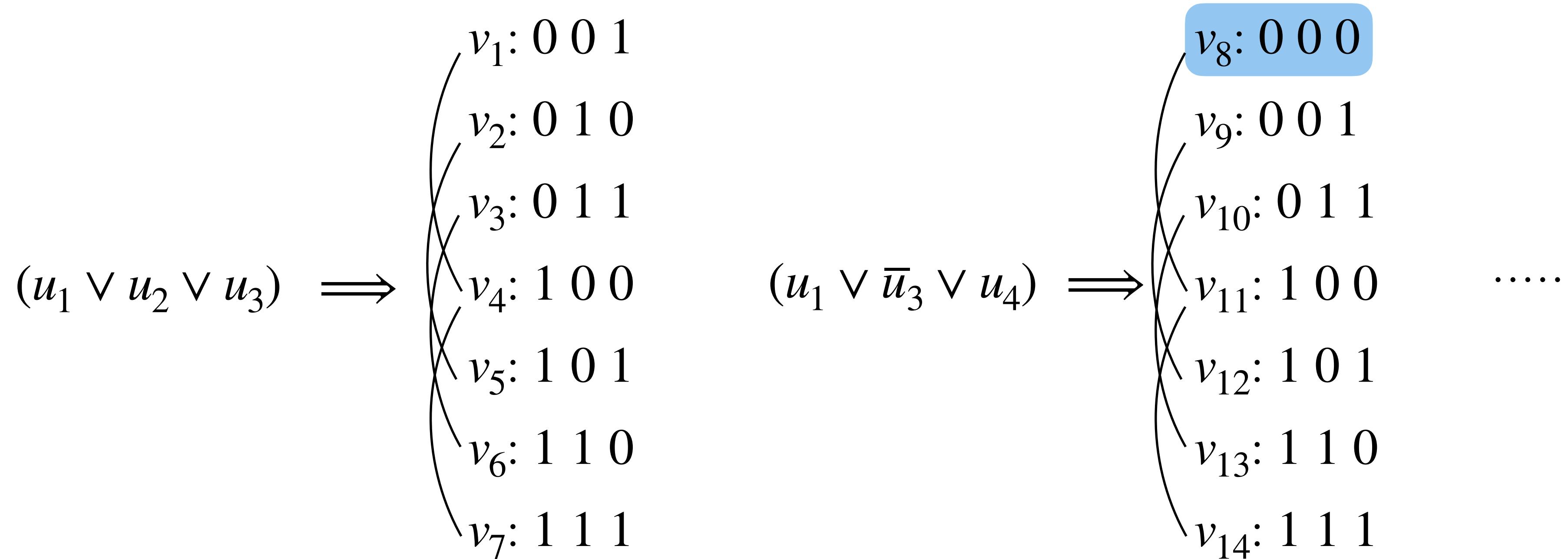
Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .



$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

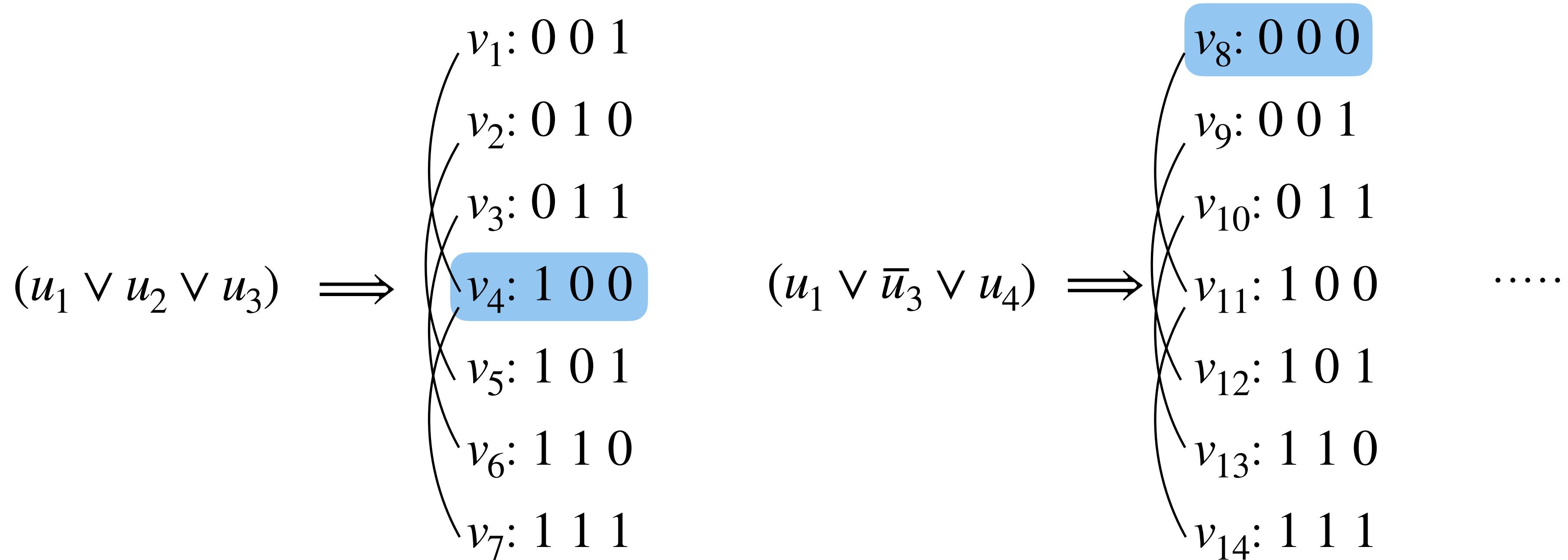
Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .



$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

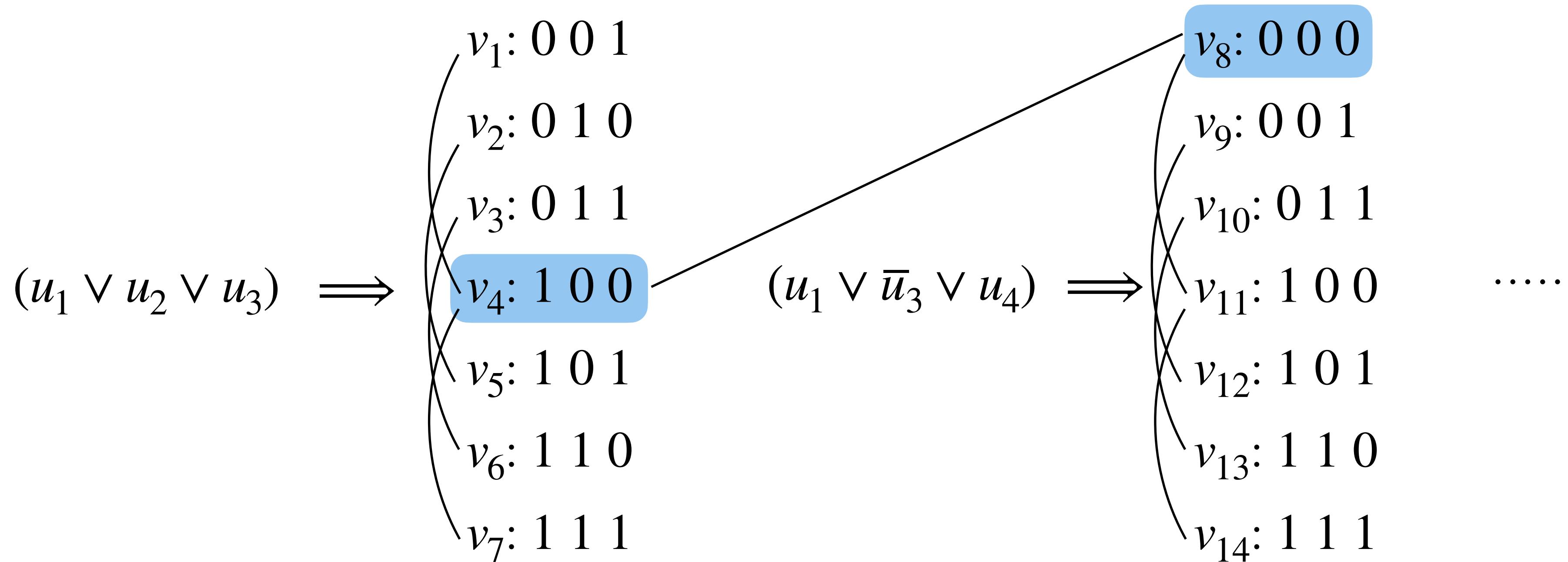
Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .



$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

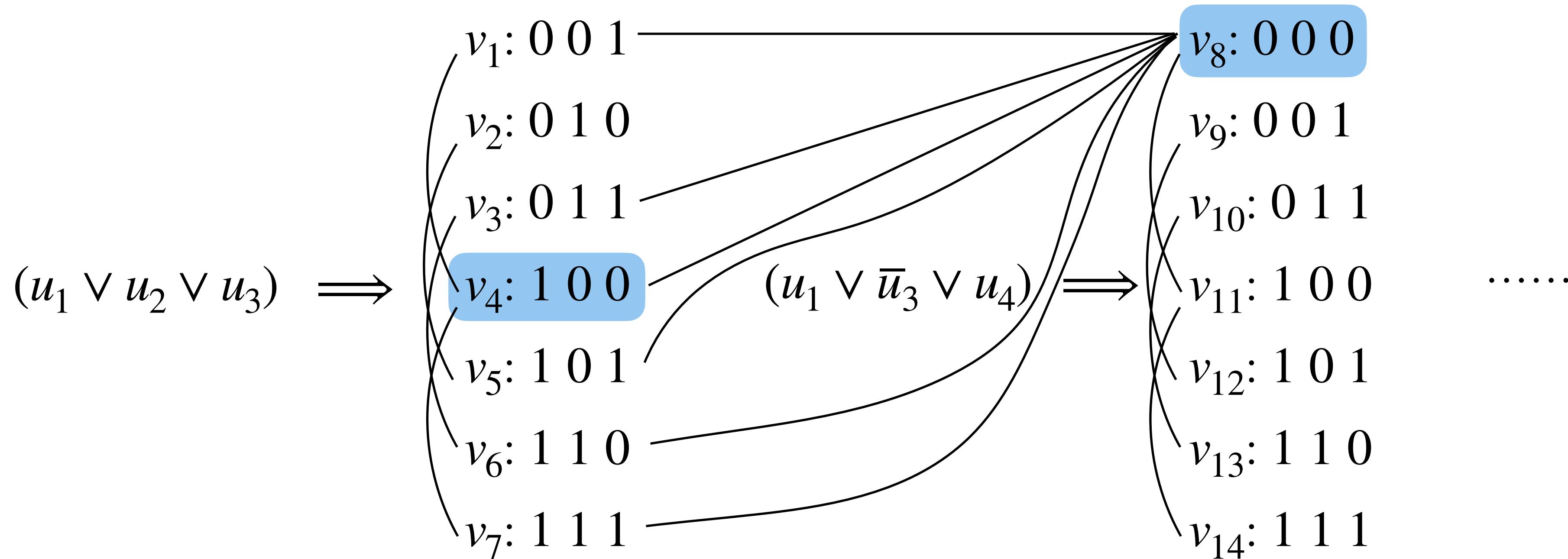
Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .



$3SAT \leq_p IndSet$

- $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$
- $IndSet = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

Goal: Convert ϕ into (G, k) in polytime, s.t. ϕ is satisfiable iff G has an independent set of size k .



$$3SAT \leq_p \text{IndSet}$$

$3SAT \leq_p IndSet$

$\phi \rightarrow \langle G, k \rangle$:

$$3SAT \leq_p \text{IndSet}$$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.

$$3SAT \leq_p \text{IndSet}$$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.
- An edge between every pair of vertices in the **same cluster**.

$3SAT \leq_p IndSet$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.
- An edge between every pair of vertices in the **same cluster**.
- An edge between two vertices of different clusters, if they correspond to **inconsistent partial assignments**.

$3SAT \leq_p IndSet$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.
- An edge between every pair of vertices in the **same cluster**.
- An edge between two vertices of different clusters, if they correspond to **inconsistent partial assignments**.
- $k = \#$ of clauses in ϕ .

$3SAT \leq_p IndSet$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.
- An edge between every pair of vertices in the **same cluster**.
- An edge between two vertices of different clusters, if they correspond to **inconsistent partial assignments**.
- $k = \#$ of clauses in ϕ .

Claim: ϕ is satisfiable iff G has an independent set of size $k = \#$ of clauses in ϕ

$3SAT \leq_p IndSet$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.
- An edge between every pair of vertices in the **same cluster**.
- An edge between two vertices of different clusters, if they correspond to **inconsistent partial assignments**.
- $k = \#$ of clauses in ϕ .

Claim: ϕ is satisfiable iff G has an independent set of size $k = \#$ of clauses in ϕ

Proof: (\implies) Suppose ϕ has a satisfying assignment u .

$3SAT \leq_p IndSet$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.
- An edge between every pair of vertices in the **same cluster**.
- An edge between two vertices of different clusters, if they correspond to **inconsistent partial assignments**.
- $k = \#$ of clauses in ϕ .

Claim: ϕ is satisfiable iff G has an independent set of size $k = \#$ of clauses in ϕ

Proof: (\implies) Suppose ϕ has a satisfying assignment u .

Form an independent set S of size k for G :

$3SAT \leq_p IndSet$

$\phi \rightarrow \langle G, k \rangle$:

- A cluster of 7 vertices \forall clause of ϕ corresponding to **satisfying partial assignments**.
- An edge between every pair of vertices in the **same cluster**.
- An edge between two vertices of different clusters, if they correspond to **inconsistent partial assignments**.
- $k = \#$ of clauses in ϕ .

Claim: ϕ is satisfiable iff G has an independent set of size $k = \#$ of clauses in ϕ

Proof: (\implies) Suppose ϕ has a satisfying assignment u .

Form an independent set S of size k for G :

By picking a vertex from every cluster whose values matches to that of u .