
Lecture 35

More NP-complete Problems

NP-Completeness and NP-Hardness

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

⏟A(x)

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

⏟ ⏟A(x) B(x)

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

⏟ ⏟ ⏟A(x) B(x) B(A(x))

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

⏟ ⏟ ⏟A(x) B(x) B(A(x))

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

NP

⏟ ⏟ ⏟A(x) B(x) B(A(x))

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

NP ≤p L

⏟ ⏟ ⏟A(x) B(x) B(A(x))

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

NP ≤p L ≤p L′￼

⏟ ⏟ ⏟A(x) B(x) B(A(x))

Observation: If is NP-hard and ,L L ≤p L′￼

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

NP-Completeness and NP-Hardness

NP ≤p L ≤p L′￼

⏟ ⏟ ⏟A(x) B(x) B(A(x))

Observation: If is NP-hard and ,L L ≤p L′￼

Transitivity in Reduction: If and , then .L1 ≤p L2 L2 ≤p L3 L1 ≤p L3

then is also NP-hard.L′￼

NP-Completeness and NP-Hardness

NP ≤p L ≤p L′￼

NP-complete Network

NP-complete Network
SAT

NP-complete Network
SAT

3SAT DirHampathIntegerProg

NP-complete Network
SAT

3SAT

IndSet
3COL

DirHampathIntegerProg

ExactOne3SAT

NP-complete Network
SAT

3SAT

IndSet
3COL

DirHampath

Hampath

IntegerProg

ExactOne3SAT

NP-complete Network
SAT

3SAT

IndSet

VertexCover

DomSet

3COL

MaxCut

Clique

DirHampath

Hampath

TSP

Hamcycle

IntegerProg

ExactOne3SAT

SubsetSum

NP-complete Network
SAT

3SAT

IndSet

VertexCover

DomSet

3COL

MaxCut

Clique

DirHampath

Hampath

TSP

Hamcycle

IntegerProg

ExactOne3SAT

SubsetSum

NP-complete Network
SAT

3SAT

IndSet

VertexCover

DomSet

3COL

MaxCut

Clique

DirHampath

Hampath

TSP

Hamcycle

IntegerProg

ExactOne3SAT

SubsetSum

“In this paper we give theorems that suggest, but do not imply, that these problems, as well as

many others, will remain intractable perpetually.” – Richard Karp, 1972

NP-complete Network
SAT

3SAT

IndSet

VertexCover

DomSet

3COL

MaxCut

Clique

DirHampath

Hampath

TSP

Hamcycle

IntegerProg

ExactOne3SAT

SubsetSum

“In this paper we give theorems that suggest, but do not imply, that these problems, as well as

many others, will remain intractable perpetually.” – Richard Karp, 1972

SAT 3SAT≤p

SAT 3SAT≤p
Idea:

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literalsk/2

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

 ϕ =

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk) ϕ =

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk) ϕ =

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk) ϕ =

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk) ϕ =

 ϕ′￼ = ∧

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u)

 ϕ =

 ϕ′￼ = ∧

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

 ϕ =

 ϕ′￼ = ∧

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

 ϕ =

 ϕ′￼ = ∧

Time to break a clause of literals into a 3CNF formula:k

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

 ϕ =

 ϕ′￼ = ∧

Time to break a clause of literals into a 3CNF formula:k

• T(k) =

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

 ϕ =

 ϕ′￼ = ∧

Time to break a clause of literals into a 3CNF formula:k

• T(k) =

• T(3) = c

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

 ϕ =

 ϕ′￼ = ∧

Time to break a clause of literals into a 3CNF formula:k

• T(k) =

• T(3) = c
2.T(k/2 + 1) + O(k)

two clauses of almost many literalsk/2 such that the satisfiability is preserved.

SAT 3SAT≤p
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

 ϕ =

 ϕ′￼ = ∧

Time to break a clause of literals into a 3CNF formula:k

• T(k) =

• T(3) = c
2.T(k/2 + 1) + O(k)

two clauses of almost many literalsk/2

Prove that

and reduction is polytime.

T(k) = O(kc)

 such that the satisfiability is preserved.

Isn’t 2SAT also NP-Complete?

Isn’t 2SAT also NP-Complete?

(u1 ∨ u2 ∨ u3)

Isn’t 2SAT also NP-Complete?

(u1 ∨ u2 ∨ u3)

(u1 ∨ u2 ∨ u) (u3 ∨ ¬u)

Isn’t 2SAT also NP-Complete?

(u1 ∨ u2 ∨ u3)

(u1 ∨ u2 ∨ u) (u3 ∨ ¬u)

Further breakdown isn’t possible.

3SAT IndSet≤p

3SAT IndSet≤p

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

A subset of vertices of , such that no two of its vertices are adjacent G

3SAT IndSet≤p

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

A subset of vertices of , such that no two of its vertices are adjacent G

3SAT IndSet≤p

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

A subset of vertices of , such that no two of its vertices are adjacent G

Has an independent set of size 3.

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3) ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)⟹ ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)

: v8 0 0 0
: v9 0 0 1
: v10 0 1 1
: v11 1 0 0
: v12 1 0 1
: v13 1 1 0
: v14 1 1 1

⟹ ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)

: v8 0 0 0
: v9 0 0 1
: v10 0 1 1
: v11 1 0 0
: v12 1 0 1
: v13 1 1 0
: v14 1 1 1

……⟹ ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)

: v8 0 0 0
: v9 0 0 1
: v10 0 1 1
: v11 1 0 0
: v12 1 0 1
: v13 1 1 0
: v14 1 1 1

……⟹ ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)

: v8 0 0 0
: v9 0 0 1
: v10 0 1 1
: v11 1 0 0
: v12 1 0 1
: v13 1 1 0
: v14 1 1 1

……⟹ ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)

: v8 0 0 0
: v9 0 0 1
: v10 0 1 1
: v11 1 0 0
: v12 1 0 1
: v13 1 1 0
: v14 1 1 1

……⟹ ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)

: v8 0 0 0
: v9 0 0 1
: v10 0 1 1
: v11 1 0 0
: v12 1 0 1
: v13 1 1 0
: v14 1 1 1

……⟹ ⟹

Goal: Convert into in polytime, s.t. is satisfiable iff has an independent set of size .ϕ (G, k) ϕ G k

• 3SAT = is a satisfiable 3CNF formula

• IndSet = has an independent set of size

{ϕ |ϕ }
{⟨G, k⟩ ∣ G k}

3SAT IndSet≤p

(u1 ∨ u2 ∨ u3)

: v1 0 0 1
: v2 0 1 0
: v3 0 1 1
: v4 1 0 0
: v5 1 0 1
: v6 1 1 0
: v7 1 1 1

(u1 ∨ u3 ∨ u4)

: v8 0 0 0
: v9 0 0 1
: v10 0 1 1
: v11 1 0 0
: v12 1 0 1
: v13 1 1 0
: v14 1 1 1

……⟹ ⟹

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

• An edge between every pair of vertices in the same cluster.

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

• An edge between every pair of vertices in the same cluster.

• An edge between two vertices of different clusters, if they correspond to inconsistent  
partial assignments.

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

• An edge between every pair of vertices in the same cluster.

• An edge between two vertices of different clusters, if they correspond to inconsistent  
partial assignments.

• = # of clauses in .k ϕ

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

• An edge between every pair of vertices in the same cluster.

• An edge between two vertices of different clusters, if they correspond to inconsistent  
partial assignments.

• = # of clauses in .k ϕ

Claim: is satisfiable iff has an independent set of size # of clauses in ϕ G k = ϕ

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

• An edge between every pair of vertices in the same cluster.

• An edge between two vertices of different clusters, if they correspond to inconsistent  
partial assignments.

• = # of clauses in .k ϕ

Claim: is satisfiable iff has an independent set of size # of clauses in ϕ G k = ϕ
Proof: Suppose has a satisfying assignment .(⟹) ϕ u

3SAT IndSet≤p

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

• An edge between every pair of vertices in the same cluster.

• An edge between two vertices of different clusters, if they correspond to inconsistent  
partial assignments.

• = # of clauses in .k ϕ

Claim: is satisfiable iff has an independent set of size # of clauses in ϕ G k = ϕ
Proof: Suppose has a satisfying assignment .(⟹) ϕ u

3SAT IndSet≤p

Form an independent set of size for :S k G

:ϕ → ⟨G, k⟩

• A cluster of vertices clause of corresponding to satisfying partial assignments.7 ∀ ϕ

• An edge between every pair of vertices in the same cluster.

• An edge between two vertices of different clusters, if they correspond to inconsistent  
partial assignments.

• = # of clauses in .k ϕ

Claim: is satisfiable iff has an independent set of size # of clauses in ϕ G k = ϕ
Proof: Suppose has a satisfying assignment .(⟹) ϕ u

3SAT IndSet≤p

By picking a vertex from every cluster whose values matches to that of .u

Form an independent set of size for :S k G

