Lecture 35

More NP-complete Problems

NP-Completeness and NP-Hardness

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\—
A(x)

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— \—
A(x) B(x)

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— \— \—
A(x) B(x) B(A(x))

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— \— \—
A(x) B(x) B(A(x))

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— \— \—
A(x) B(x) B(A(x))

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— — \— — \—
A(x) B(x) B(A(x))
< L <. L

—P —P

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— — \— — \—
A(x) B(x) B(A(x))
<, L <, L

Observation: It L is NP-hard and L <, L’

NP-Completeness and NP-Hardness

Transitivity in Reduction: It L, < [, and L, < L, then L) <) Ls.

\— \— \——
A(x) B(x) B(A(x))
<, L <, L

Observation: If L is NP-hard and L <, L', then L’ is also NP-hard.

NP-complete Network

NP-complete Network

SAT

NP-complete Network

SAT

IntegerProg 3SAT DirHampath

NP-complete Network

SAT
IntegerProg 3SAT DirHampath
/ ~

IndSet ExactOne3SAT
3COL

NP-complete Network

SAT
IntegerProg 35AT DirHampath

IndSet ExactOne3SAT Hampath
3COL

NP-complete Network

SAT
IntegerProg 35AT DirHampath

IndSet ExactOne3SAT Hampath

3COL \ \ \

VertexCover SubsetSum Hamcycle

Clique / \ \

DomSet MaxCut TSP

NP-complete Network

SAT

IntegerProg 35AT

DirHampath

o /\ \

ExactOne3SAT Hampath

3COl IndSet \ \
‘ VertexCover SubsetSum Hamcycle

Clique /

DomSet

v

T~ \

MaxCut TSP

L 4
L 4
L 4
L 4
L 4
L 4
L 4
.0
L 4

\J

.
\J
‘l

NP-complete Network

SAT
IntegerProg 35AT DirHampath

o / \ \

IndSet ExactOne3SAT Hampath

3COL
N . \

‘:”’ VertexCover SUbsetSUm Hamcycle
Clique / \ \
DomSet MaxCut TSP
4 S .
v) g

“In this paper we give theorems that suggest, but do not imply, that these problems, as well as

many others, will remain intractable perpetually.” — Richard Karp, 1972

NP-complete Network

SAT
IntegerProg 35AT DirHampath

o / \ \

IndSet ExactOne3SAT Hampath

3COL
N N\ \

‘:"” VerteXCOVGI‘ SUbsetSUm Hamcycle
Clique / \ \
DomSet MaxCut TSP
4 S .
v) g

“In this paper we give theorems that suggest, but do not imply, that these problems, as well as

many others, will remain intractable perpetually.” — Richard Karp, 1972

SAT <, 35AT

SAT <, 35AT

Idea:

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O =

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

/

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

RN

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

7N

P = A

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

N

¢/ - (u1Vu2...Vuk/2Vu) AN

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

¢ = (WUyVir,V...Vu)
) k

=
[

(l/ll \/u2 \/uk/2VI/t) AN (I/lk/2_|_1 Vuk/2_|_2... VukV _'l/l)

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

¢/ — (ul \4 Us... V Upn V I/l) N (I/lk/2_|_1 V Urpgne .- V U, V _'l/i)

Time to break a clause of k literals into a 3CNF formula:

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

¢/ — (ul \4 Us... V Upn V I/l) N (I/lk/2_|_1 V Urpgne .- V U, V _'l/i)

Time to break a clause of k literals into a 3CNF formula:

® T(k) —

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

O = (WU Vu,V...Vu
1 Y U k

¢/ — (ul \4 Us... V Upn V I/l) N (I/lk/2_|_1 V Urpgne .- V U, V _'l/i)

Time to break a clause of k literals into a 3CNF formula:
o 7T(3)=c

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

¢ — (I/tl\/uz\/Vuk)
¢/ — (ulvuz...vuk/zvu) N (I/tk/2+1\/uk/2_|_2...\/ukv _'l/i)

Time to break a clause of k literals into a 3CNF formula:
o T(k)=2TKk/2+ 1)+ O(k)
o 7T(3)=c

SAT <, 35AT

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of £ > 3 literals into

two clauses of almost k/2 many literals such that the satisfiability is preserved.

¢ — (I/tl\/uz\/Vuk)
¢/ — (ulvuz...vuk/zvu) N (I/tk/2+1\/uk/2_|_2...\/ukv _'l/l)

Time to break a clause of k literals into a 3CNF formula:

_ Prove that T(k) = O(k°)
o T(k)=2.T(k/I2+ 1)+ Ok

(k) () (k) /and reduction is polytime.
o 7T(3)=c

Isn’t 2SAT also NP-Complete?

Isn’t 2SAT also NP-Complete?

(U Vi,V uy)

Isn’t 2SAT also NP-Complete?

(U Vi,V uy)

T

(l/ll V uz V M) (l/t3 V _'l/t)

Isn’t 2SAT also NP-Complete?

(U Vi,V uy)

T

(I/ll V I/iz V u) (MB V _'l/t)

Further breakdown isn’t possible.

3SAT <, IndSet

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

\

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

\

A subset of vertices of G, such that no two of its vertices are adjacent

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

\

A subset of vertices of G, such that no two of its vertices are adjacent

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

\

A subset of vertices of G, such that no two of its vertices are adjacent

Has an independent set of size 3.

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

(Vi Vi) =

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v;: 001
1,: 010
v3: 011
(uyVu,Vuy) = v 100
vs: 101
ve: 1 10
vi 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v;: 001
v,: 010
v;: 011
(uyViu,Vu,) = v,: 100 (U vViy Vi) =
vs: 101
ve: 1 10
vi: 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v;: 001 ve: 000
v,: 010 ve: 00 1
v3: 011 vi: 011
(uyVu,Vuy) = v 100 (uyVizvVuy) = v;:100
vs: 101 vi5: 101
ve: 1 10 viz: 110

vo: 111 vige 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v: 001 ve: 000
v,: 010 ve: 00 1
v3: 011 vip: 011
(uyVu, Vi) = v,: 100 (u VigvVu) = v,;:100
vs: 101 vip: 101
ve: 110 vi: 1 10

vo: 111 vige 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v: 001 ve: 000
v,: 010 ve: 00 1
v3: 011 vip: 011
(uyVuy, Vi) = (M, 100 (uy VigVu) =\v,;:100
vs: 101 v 101
ve: 110 vi: 1 10

vo: 111 vige 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v: 001 ve: 000
v,: 010 ve: 00 1
v3: 011 vip: 011
(uyVuy, Vi) = (M, 100 (uy VigVu) =\v,;:100
vs: 101 v 101
ve: 110 vi: 1 10

vo: 111 vige 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v: 001 ve: 000
v,: 010 ve: 00 1
v3: 011 vip: 011
(uyVuy, Vi) = (Vi 100 (uy VigVu) =\v,;:100
vs: 101 v 101
ve: 110 vi: 1 10

vo: 111 vige 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v: 001 ve: 000
v,: 010 ve: 00 1
v3: 011 vip: 011
(uyVuy, Vi) = (Vi 100 (uy VigVu) =\v,;:100
vs: 101 v 101
ve: 110 vi: 1 10

vo: 111 vige 111

3SAT <, IndSet

® 3SAT = {¢| ¢ is a satistiable 3CNF formula}
® IndSet = {(G, k) | G has an independent set of size k}

Goal: Convert ¢ into (G, k) in polytime, s.t. ¢ is satistiable iff G has an independent set of size k.

v: 001 ve: 000
v,: 010 ve: 00 1
v3: 011 vip: 011
(uyVuy, Vi) = (Vi 100 (uy VigVu))/=\\v,;: 100
vs: 101 v 101
ve: 110 vi: 1 10

v: 111~ vige 111

3SAT <, IndSet

3SAT <, IndSet

¢ — (G, k):

3SAT <, IndSet

¢ — (G, k):

® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

3SAT <, IndSet

¢ — (G, k):
® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

® An edge between every pair of vertices in the same cluster.

3SAT <, IndSet

¢ — (G, k):
® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

® An edge between every pair of vertices in the same cluster.

® An edge between two vertices of different clusters, if they correspond to inconsistent

partial assignments.

3SAT <, IndSet

¢ — (G, k):

A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

An edge between every pair of vertices in the same cluster.

An edge between two vertices of di

partial assignments.

k_

of clauses in ¢.

terent clusters, if they correspond to inconsistent

3SAT <, IndSet

¢ — (G, k):
® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

® An edge between every pair of vertices in the same cluster.

® An edge between two vertices of different clusters, if they correspond to inconsistent

partial assignments.

® k= # of clauses in ¢.

Claim: ¢ is satisfiable iff G has an independent set of size k = # of clauses in ¢

3SAT <, IndSet

¢ — (G, k):
® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

® An edge between every pair of vertices in the same cluster.

® An edge between two vertices of different clusters, if they correspond to inconsistent

partial assignments.

® k= # of clauses in ¢.

Claim: ¢ is satisfiable iff G has an independent set of size k = # of clauses in ¢

Proof: (=) Suppose ¢ has a satistying assignment 1.

3SAT <, IndSet

¢ — (G, k):
® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

® An edge between every pair of vertices in the same cluster.

® An edge between two vertices of different clusters, if they correspond to inconsistent

partial assignments.

® k= # of clauses in ¢.

Claim: ¢ is satisfiable iff G has an independent set of size k = # of clauses in ¢

Proof: (=) Suppose ¢ has a satistying assignment 1.

Form an independent set S of size k for G:

3SAT <, IndSet

¢ — (G, k):
® A cluster of 7 vertices V clause of ¢ corresponding to satistying partial assignments.

® An edge between every pair of vertices in the same cluster.

® An edge between two vertices of different clusters, if they correspond to inconsistent

partial assignments.

® k= # of clauses in ¢.

Claim: ¢ is satisfiable iff G has an independent set of size k = # of clauses in ¢

Proof: (=) Suppose ¢ has a satistying assignment 1.
Form an independent set S of size k for G:

By picking a vertex from every cluster whose values matches to that of u.

